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SUMMARY 

A boundary integral equation method is used to compute the forces acting on bodies oscillating at or near 
the free surface of a fluid. This method relies on the use of a Green function representing the potential of 
a unit pulsating source beneath the free surface. A peculiarity of the boundary integral equation method in 
the presence of a free surface is that it breaks down at certain characteristic frequencies also known as 
‘irregular frequencies’. The objectives of the present study are to develop simple and efficient algorithms for 
the numerical evaluation of the Green function as well as a method for removing the irregular frequencies. In 
particular, systematic expansions for the Green function have been developed. These algorithms are very 
efficient and remarkably simple to implement numerically. In order to remove the irregular frequencies, the 
boundary integral equation is supplemented by the first N null-field equations. As a result the first 
N irregular frequencies are eliminated. This method introduces a very small additional computational cost 
and is general enough so that it can be applied to any free surface problem. 
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1. INTRODUCTION 

During the last 20 years there has been growing interest in methods for calculating the wave loads 
on ships and offshore platforms and predicting their unsteady motions. The first analyses were 
limited to bodies of simple geometry such as submerged circular cylinders, spheres or ellipsoids. 
Another special case of body shape that has been studied extensively is that of a slender ship using 
methods from perturbation theory. Despite its utility, this analysis is limited; it produces poor 
results close to the bow and stern of a ship and cannot be used for typical offshore structures. The 
advent of large, powerful computers has led to the development of numerical methods that 
removed the geometrical restrictions of the earlier methods. In recent years a number of 
numerical methods for calculating wave diffraction and radiation involving three-dimensional 
bodies of arbitrary shape have been developed. 

The most popular of these methods is the boundary integral method. This approach is based on 
Green’s theorem with an appropriate Green function and has the major advantage of reducing 
the problem to solving an integral equation on the fluid boundaries and therefore the dimensions 
of the computational domain are reduced by one. The integral equation is solved numerically 
using a panel method. Hess and Smith’ were the first to develop the method to a practical stage 
for aerodynamic applications for an infinite fluid. Following their analysis, the body surface is 
approximated by a number of plane quadrilateral elements of constant singularity strength and 
the integral equation is solved by collocation, resulting in a linear system of equations for the 
singularity strengths. 
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The main numerical task in extending the method to free surface problems is to compute the 
Green function efficiently and accurately. The Green function in this case, which represents the 
potential of a unit pulsating source beneath the free surface, is a substantially more complicated 
function than that encountered in infinite fluid, elastodynamics or acoustics problems. For most 
practical cases the body surface must be approximated by at least 100 panels and the com- 
putations must be performed for at least 10 frequencies. Since the Green function and its 
derivatives must be evaluated for each combination of panels and at each frequency, under these 
assumptions at least lo5 Green function evaluations are required. Therefore a peculiarity of this 
method compared to a more traditional finite element method is that the most important 
numerical task is in evaluating the coefficients of the resulting linear system rather than solving it. 

The fundamental importance of the Green function for this problem has motivated several 
studies on its numerical calculation. A survey of different integral representations and some series 
expansions may be found in Reference 2. In Reference 3 numerical integration was used to obtain 
tables of the values of the Green function and its derivatives. These tables are accurate up to 15 
decimal places and very useful as a benchmark for checking the accuracy of numerical algorithms. 
However, for most cases of practical interest, numerical integration cannot be used because of the 
large computational time involved. A more attractive alternative is to develop power series and 
asymptotic series expansions. Examples of such studies include Reference 4 as well as Reference 5. 
In Reference 6 the use of Chebychev expansions to evaluate the Green function is outlined. 
However, no specific details are given since these expansions are contained in the commercial 
code FINGREEN. 

Another complication of the boundary integral method in the presence of a free surface is that it 
does not have a unique solution at certain characteristic frequencies also known as ‘irregular 
frequencies’. These frequencies correspond to eigenvalues where the interior problem has a non- 
trivial solution. This phenomenon was first pointed out by John’ and verified numerically by 
Frank* for oscillating cylinders in two dimensions. Large numerical errors occur in a frequency 
bandwidth close to each irregular frequency and this phenomenon has a severe effect especially in 
the high-frequency range where the irregular frequencies are closer to each other. The existence of 
the irregular frequencies represents the most serious drawback of the boundary integral equation 
method and several methods for removing them have been proposed.’- l4 

The objectives of the present study are to develop simple and efficient algorithms for the 
numerical evaluation of the Green function as well as a method for removing the irregular 
frequencies. In particular, systematic expansions for the Green function have been developed. 
Depending on the values of the arguments, four different expansions are used. One expansion 
consists of a Taylor series, another is a numerical form based on the Haskind integral representa- 
tion, while the other two are series involving special functions. No special function evaluation is 
needed; in all cases the special function values are obtained by using recursion formulae. All these 
algorithms are very efficient and remarkably simple to implement numerically. In order to 
remove the irregular frequencies, the boundary integral equation is supplemented by the first 
N null-field equations. The resulting overdetermined system is then solved using a least squares 
procedure. As a result the first N irregular frequencies are eliminated. This method introduces 
a very small additional computational cost and is general enough so that it can be applied to any 
free surface problem. 

A computer program has been developed. Its efficiency and accuracy are illustrated by 
computing the added mass and damping of a sphere and a right circular cylinder in heave and 
surge. In all cases considered the results agree well with other published results and are free from 
the irregular frequency problem. 
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2. MATHEMATICAL FORMULATION 

2.1. The boundary value problem 

Consider a rigid body floating on the free surface of deep water and performing forced 
harmonic oscillations of small amplitude at a radian frequency w. An xyz-co-ordinate system is 
defined with z positive upwards and the xy-plane coincident with the calm free surface. Under the 
usual assumptions of an inviscid, irrational flow the problem may be described by a velocity 
potential @(x, y, z,  t). It is convenient to write @ as 

/ 6  \ 

with t j  the complex amplitude of the body motion in each of the six degrees of freedom of the 
body. 

In the fluid domain each of the potentials must satisfy the Laplace equation 

~ 2 4 ~  = 0. (2) 
The boundary condition on the free surface in its linear form is 

- V ~ ~ + ( ~ ! J ~ ) ~ = O  on z=O, 

where v = 0 2 / g  is the wave number. 
On the body surface S each of the radiation p6tentials must satisfy 

" j -  iconj= Q ( P ) ,  an  j =  1,2,. . . , 6, 

where nj  are the components of the generalized normal directed out of the fluid domain: 

(3) 

(4) 

( n l , n 2 , n 3 ) = n ,  ( n . t , n s , n d = r x n ,  r=(x,y,z). 

In addition to the above, appropriate radiation conditions at infinity are needed in order to 
make the solution unique. 

2.2. Derivation of the integral equation 

given by Wehausen and Laitone (Reference 15, equation (13.17)) as Re[G(P, Q)e-'"'] with 
The Green function for this problem, which is the potential of a submerged, pulsating source, is 

where P=(x, y, z) is the field point, Q =(<, t f ,  C) is the source point, 

r2  =(x- o2 + ( y - ~ ) ~  +(z-[)~, 

r" =(x- O2 + ( y - r , ~ ) ~  + ( z +  C)', 
R 2  =(x- O2 + ( ~ - t f ) ~ ,  

v = w2/g is the wave number, Jo is the Bessel function of the first kind and -$denotes the principal 
value. 
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Application of Green’s theorem provides a Fredholm integral equation of the second kind for 
the values of the potential on the body surface S: 

From the values of the potential on the body surface the added mass and damping coefficients 
may be obtained. Following the standard definition given in Reference 16, the added mass and 
damping coefficients are 

2.3. The discretized problem 

The integral equation (6) is solved numerically using a panel method. The body surface is 
approximated by an ensemble of flat quadrilateral panels. The value of the potential is assumed 
constant on each panel, reducing the problem of finding a continuous potential distribution to 
determining a finite number of unknown potential strengths. These potential strengths are 
determined by collocation, where the integral equation (6) is satisfied at one point for each panel. 
Following this procedure, equation (6) may be written in the discrete form 

where M is the number of quadrilateral elements, (4 i )m is the potential strength of the mth 
element, 

n=m, 
M 

Bn= C ( 5 ) m  lSm Q)dSQ. 
m = l  

A 2 x 2 product Gauss quadrature rule is used to evaluate the integrals of the Green function 
and its derivatives over each panel. 

2.4. Null-field equations 

A point in the interior of the body is selected and designated as the origin. Then the Green 
function G may be expanded as 

A different approach to solve the boundary value problem for 4 was proposed by 

m = O  n = O  a=l 

where the water wave multipoles @Z.(Q) are a complete set of harmonic potentials satisfying the 
free surface condition (3) and a i , (P)  are regular coefficients. Both a;,,(P) and @E,,(Q) are defined 
in Reference 17. 
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This approach leads to an infinite set of moment-like equations called the null-field equations 
for water waves: 

1 [ ( 4 j ( Q ) s -  c(Q)@&(Q)  dSQ=O, 0=1,2, m,n=O, 1,2,. . . . 
S an, 

It is possible to show that the null-field equations possess a unique solution at all frequencies." 
Furthermore, the null-field equations have been used to solve radiation problems in two 
dimensions involving bodies of simple geometry such as heaving circular and elliptical cylinders. 
However, their use appears to be limited to bodies of simple geometrical shape. 

3. EVALUATION OF THE GREEN FUNCTION 

The task here is to evaluate the principal value integral term, which, following Newman,6 may be 
written as a function of two non-dimensional, non-negative parameters X = v [ ( x  - l)' + 
(y-t7)']'/ ' and Y=-v(z+r). 

We have 
1 1  
r r  

G(P ,  Q ) = - + , +  v F(X, Y)+2nvi e-'Jo(X), 

with 
00 e-kY 

F(X, Y)=2 f. -Jo(kX)dk. k-1 

The integral F(X, Y) can also be transformed into a finite non-singular integral," 

where the finite integral term g(X, Y) is given by 

Here Yo is the Bessel function of the second kind and Ho is the Struve function. 
The Bessel functions Jo and Yo and the Struve function H o  involved in equations (1 1) and (13) 

may be evaluated numerically using efficient approximations given in References 20 and 21. 
Equation (13) provides a decomposition of the Green function into a far-field term which 

represents waves radiating to infinity and a non-oscillatory near-field term g(X, Y). This near- 
field term g(X, Y) represents a local disturbance decaying monotonically for increasing X. It is 
therefore advantageous to use the decomposition (12) for large values of the ratio X/Y. The form 
(1 1) is more useful for small X/Y. 

3.1. Expansion for small X and Y 

The near-field term g(X, Y) may be expanded in a Neumann series involving products of Bessel 
functions with hyperbolic cosines which converges for small values of X and Y. If we change the 
variable of integration in (13) by setting u= sinh-'(t/X), we obtain 

sinh-'(Y/X) 

eXsinhu-Y du. 
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Making use of the fact that ex(r-l/z)/z is the generating function for the Bessel function, we may 
write 

W 
eXsinhu-  -Jo(X)+ 1 [en"+(- l)"e-""].~,,(x). 

n =  1 

Then 
sinh- ' ( Y / X )  m 

g(X, Y ) = l  (J0(X)+2 C {cosh(2nu)J2,(X)+sinh[(2n- l ) ~ ] J ~ ~ - ~ ( X ) } ) d u ,  
0 n =  1 

with the final result 

where 
v=sinh-'(r)=h[$+( 1 +s) y2 1/2 1. 

For large orders we have 

therefore for sufficiently small values of X and Y the Neumann series (15) converges after only 
a few terms. 

Algorithm (15) is remarkably simple to implement numerically. The Bessel functions J , ( X )  are 
evaluated using the algorithm described in Reference 20 (equation (9.12)). Briefly, this algorithm 
may be summarized as follows. Pick up arbitrary starting values for J , ,  l(X)=O and J,(X)= 1. 
Use the recurrence relation to evaluate J , -  l(X), Jn-2(X), . . . , Jo(X). Normalize the results by 
use of the equation 

J,(X)+2J,(X)+2J,(X)+. . .= 1. 

This procedure has been implemented to evaluate the terms in the Neumann series (15). It has 
the attractive feature that no Bessel function evaluation is necessary. 

Equation (15) may be used to evaluate the Green function with 6D accuracy in the domain 
defined by 0 I YI 2 ,05 Y I X I 5. For values of X 5 0.5 the number of terms required is 4 + 11X 
with a maximum of nine terms. For values of X20.5 the series may be truncated after 15 terms. 

3.2. Expansion for large X 

When the value of X is large, the near-field term g(X, Y) may be expanded in a series involving 
products of the Legendre polynomials and the incomplete gamma function. We change the 
variable of integration in (13) by setting r=(Y-t)/R,, where R1 = d ( X 2 +  YZ)=vr' ,  with the 
result 

e-rR1 (1 - 22 cos 8 + r2)-  112 dr, =re 
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where the ratio 

in spherical co-ordinates. Since (1 - 22 cos 8 + 
polynomials, we may write 

is the generating function for Legendre 

m - 
(1 cos e + r 2 ) - 1 / 2 =  P,(COS e ) r n ,  

n = O  

where P, is the Legendre polynomial of order n. We thus obtain 

(re r d r  g(x, Y ) =  1 P,(cOse) e-7R1 
m 

n=O 

where y(n+ 1, Y )  is the incomplete gamma function which is defined as (Reference 20, equation 
(6.5.2)) y(n+ 1, Y)=fL  due-"u". 

For large values of Y, y(n+ 1, Y)+n! and formula (9) gives 

This limiting case of the general formula (18) was derived by Newman6 by repeated integration by 
parts. 

Algorithm (17) can be used for efficiently evaluating the function g ( X ,  Y ) .  The Legendre 
polynomials and the incomplete gamma functions of any order n may be determined from the 
forward recursion relations (Reference 20, equations (8.5.3) and (6.5.22)), where the starting values 
Po (cos 0) = 1 ,  PI (cos 6) = cos 0 and y (1, Y )  = 1 - e- are used. The forward recursion relations are 
stable for the number of terms used. Again no special function evaluations are needed. 

Equation (17) may be used in the domain defined as shown in Figure 1 by X 2 5. The number of 
terms required for 6D accuracy varies from three to 13 and is given in Table I for different values 
of X and Y. 

3.3. Expansion for small XJY 

For small values of the ratio X / Y  the Bessel function in the integral representation (11) of the 
Green function may be expanded in a power series. The final result, which may be found in 
References 6 and 5, is a double series with positive powers of X and negative powers of Y: 

where Ei( Y )  is the exponential integral. Equation (19) is used in the domain 0 5 x 1 5 ,  X / Y s 0 . 5  
with n = 9  terms. 

3.4. Haskind integral representation 

For values of X and Y in the interior domain between the lines X = 0.5 Y, Y =  2 and X = 5 none 
of the previous three expansions can be used to evaluate the Green function. For this case the 
method developed by Telste and Noblesse5 is appropriate. Briefly, this method may be described 
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? 
B'.m 2.00 4'.00 

B 

6.00 8.00 10.00 12.00 
X 

Figure 1 .  Domains of applicability of each algorithm for 6D accuracy evaluation of the Green function 

Table I. Number of terms required in (17) for 6D absolute 
accuracy 

X 

Y 5 8 10 15 20 

0.1 3 3 3 3 3 
0.5 4 3 3 3 3 
1 6 4 4 3 3 
2 9 6 6 5 3 
5 13 9 7 6 5 

10 13 10 9 I 5 
15 9 8 7 5 5 
20 6 5 4 4 4 
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as follows. In the integral representation (13) change the variable of integration by setting t =Xt 
and expand the term (1 +?’)-’’’ in a polynomial series. The resulting expressions may then be 
integrated analytically to give an approximation for the Green function. 

3.5. Summary 

In the previous subsections simple and efficient methods for evaluating the Green function 
have been described. The main advantage of these expansions is their simplicity and ease of 
numerical implementation. Only the first few terms in each expansion are necessary for 6D 
absolute accuracy. The domain of applicability of each algorithm is shown in Figure 1. More 
specifically, in region A, which is bounded by the lines Y =  2, X = 0.5 Y and X =  5, the Neumann 
series (1 5 )  is used with four to 15 terms depending on the values of X and Y. In region B, which is 
defined by X 2  5, the expansion (17) is used with the number of terms given by Table I. No more 
than 13 terms are necessary for 6D accuracy. The expansion (19) is used in the domain O I X I 5 ,  
XlYsO.5 with nine terms. Finally, the Haskind integral representation is used in the interior 
domain bounded by the lines X = 0.5 Y, Y =  2 and X = 5. The computing time is between 2 x 10- 
and 2 x on an IBM 3090 machine for all algorithms considered. 

4. SUPPRESSION OF THE IRREGULAR FREQUENCIES 

In the vicinity of the irregular frequencies the algebraic system (8) becomes ill conditioned and the 
solution exhibits large numerical errors. There exist many methods of removing the irregular 
frequencies, some of them motivated from analogous methods used in acoustics where a similar 
non-uniqueness problem occurs. A survey of different methods may be found in Reference 14. 
Roughly speaking, the effectiveness of each method is judged using two criteria: (a) the method 
must be robust and general enough to handle three-dimensional problems involving bodies of 
arbitrary shape in all degrees of freedom; (b) the extra computational effort must be small when 
compared to that of the original boundary integral method. 

In the present work, in order to eliminate the influence of the irregular frequencies, the 
M algebraic equations (8) are supplemented by the first N null-field equations. The result is an 
overdetermined system of M + N equations for the M unknown potential strengths ( $j),,, which is 
solved by a least squares procedure. In Reference 22 an analogous procedure was adopted for the 
solution of exterior acoustics problems without any numerical examples. It is possible to  extend 
the analysis of Reference 22 and show that the interior potential 4, and its first N- 1 partial 
derivatives vanish at the origin. From the shape of the eigenmodes corresponding to each 
irregular frequency it follows that the first N irregular frequencies will be eliminated and as 
a result the method produces a unique solution for wave numbers v < v N +  (vN+ is the (N + 1)th 
irregular wave number). Therefore, given an estimate of the (N + 1)th irregular wave number (see 
e.g. Reference 23), the present method will give accurate results for all v c v N +  1. In practice the 
method can perform much better, because if, say, one uses only a single extra equation, one 
enforces 4i = 0 at the origin. Therefore in addition to the first irregular frequency in heave all the 
irregular frequencies for which &#O at the origin are suppressed. A similar argument can be used 
for more additional equations where the partial derivatives of qji are forced to vanish at the origin. 

The present method is related to the combined boundary integral equation method (CBIEM) 
proposed in Reference 14, where the solution of the integral equation is supplemented by the 
requirement that the interior potential be zero at certain interior points. The selection of these 
interior points is arbitrary and special care must be exercised so that they do  not coincide with the 
nodes of the interior eigenmode, because then the method fails. The effectiveness of the present 
method stems from the fact that it removes the arbitrariness in selecting the number and location 
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of these interior points. Instead, given an estimate of the location of the irregular frequencies, it 
provides a definite rule for the number of extra equations that must be used to guarantee 
uniqueness. Especially in the high-frequency range, where the number of nodes in the interior 
eigenmode increase, the present method is believed to have a clear advantage. 

Regarding the additional computational effort required, the computational penalty consists of 
evaluating N M  extra influence coefficients and solving a system of N + M  equations with 
M unknowns as opposed to an M x M system. Although a precise estimate of the extra CPU 
requirement has not been obtained, the CPU requirement for the modified method should not 
exceed ( M +  N) /M as a percentage of the original method. 

As a conclusion it is believed that the present method is effective in the spirit of the two criteria 
set at the beginning of this section, i.e. it is general enough to handle problems involving bodies of 
arbitrary shape and at the same time the extra computational cost is modest. 

5. NUMERICAL RESULTS 

To illustrate the performance of the numerical method, the added mass and damping coefficients 
for a sphere and a vertical circular cylinder have been computed. Since both bodies have two 
planes of symmetry, only one-quarter of the underwater surface needs to be discretized. Figure 
2 shows the non-dimensional added mass and damping coefficients for a heaving sphere versus 
the non-dimensional wave number vR, where R is the radius of the sphere. 101 plane quadrilateral 
panels were used to discretize one-quarter of the underwater surface. The asterisks are results 
obtained by Barakatz4 using the method of multipoles. For a sphere in heave the first irregular 
wave numbers are v1  R = 2.56 and v2 R = 5.52. The dashed line results were obtained from the 
numerical solution of the system of equations (8). In the vicinity of the irregular frequencies 
substantial numerical errors occur. If, however, this system of equations is supplemented by the 
first symmetric null-field equation, the resulting solution, which is the solid line in Figure 2, is free 
from the irregular frequency problems for all wave numbers. For this particular example only the 
first symmetric null-field equation which enforces &=O at the origin is sufficient to guarantee 
uniqueness given that all interior eigenmodes corresponding to the irregular frequencies have 
4 * # O  at the origin. The additional computational time introduced is very small since only 
M additional coefficients must be evaluated and the linear system of equations is augmented by 
one equation. 

Figure 3 shows the non-dimensional added mass and damping coefficients for a sphere in surge 
versus the non-dimensional wave number. Again 101 plane quadrilateral panels were used to 
discretize the sphere surface. The asterisks are results computed by HulmeZ5 using ring sources 
and a one-dimensional integral equation. As in the case of heave, the numerical solution of the 
system (8), represented by the dashed curve in Figure 3, suffers from large numerical errors in the 
vicinity of the irregular frequencies. To correct this problem, the system of equations is supple- 
mented by the first non-symmetric null-field equation which enforces ai#@r at the origin. The 
resulting solution, which is the solid line in Figure 3, is free from the irregular frequency problems 
and agrees well with the results obtained by HulmeZ5 for all wave numbers. 

Figure 4 presents the non-dimensional added mass and damping coefficients for a right circular 
cylinder in heave. The radius-to-draft ratio R / T = 2 .  The asterisks are results of Breit et ~ 1 . ~ ~  
obtained by using ring sources and a one-dimensional integral equation. The results obtained by 
the present three-dimensional theory were obtained using a total of 113 panels consisting of 
a cosine spacing of 49 panels on the bottom and 48 panels on the side of a one-quarter body. In 
order to model the flow properly around the sharp corner where the bottom meets the side, small 
panels at an angle of 45" were placed. For this particular body the irregular wave numbers are 
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Figure 2. Heave added mass and damping coefficients for a sphere 
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Figure 3. Surge added mass and damping coefficients for a sphere 
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Figure 5. Surge added mass and damping coefficients for a right circular cylinder 
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given explicitly” as vMR=KMRcoth(KM T), where KMR are the roots of the Bessel function J o .  
As in the case of a sphere, the numerical solution of the system (8) represented by the dashed curve 
in Figure 4 exhibits large errors close to the irregular frequencies. If, however, the first symmetric 
null-field equation is used, the solution does not exhibit any irregular frequency effect. 

Finally, in Figure 5 the non-dimensional added mass and damping coefficients for a right 
circular cylinder in surge are shown. As in the previous cases, the system (8) overdetermined with 
the first non-symmetric null-field equation is free from the irregular frequency effects for all wave 
numbers. 

6. CONCLUSIONS 

A boundary integral equation method solving three-dimensional free surface problems has been 
developed. Efficient algorithms for the numerical evaluation of the Green function have been 
presented. In order to remove the numerical difficulties with the irregular frequencies, the 
boundary integral equation is overdetermined with the first N null-field equations. The resulting 
solution is free from the first N irregular frequencies. 
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